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LETTER TO THE EDITOR 

Conjectured singularity loci for the Potts model 
on the square lattice? 

John D Ramshaw 
Theoretical Division, University of California, Los Alamos Scientific Laboratory, Los 
Alamos, New Mexico 87545, USA 

Received 5 July 1979 

Abstract. It is conjectured that the singularities in the free energy for the q-state Potts 
model on the square lattice lie on two self-dual circles in the complex x plane where 
x = exp(-J/kT) is the usual low-temperature variable. These circles are natural generalis- 
ations of the known circles for the king model (q = 2). The conjecture leads to the 
prediction that there is a single antiferromagnetic critical point at x = 1 +[q / (q  - l)]’”. 

The Potts (1952) model has attracted much attention in recent years (Mittag and 
Stephen 1971, Straley and Fisher 1973, Baxter 1973, Zwanzig and Ramshaw 1977, 
Schick and Griffiths 1977, Hintermann et al 1978). The Potts model is a generalised 
king model in which the sites of a regular lattice are occupied by ‘spins’, each of which 
may exist in any of q distinct states. The interaction energy of a pair of spins is zero 
unless they are nearest neighbours in the same state, in which case it is -J. Instead of 
the temperature T, it is convenient to utilise the independent variable x = exp(-J/kT), 
where k is Boltzmann’s constant. 

We present here a conjecture as to the loci, in the complex x plane, of the 
singularities in the free energy for the Potts model on the square lattice. The conjecture 
leads to the prediction that there is a single antiferromagnetic critical point at x = 

Our conjecture is based upon the duality theorem (Potts 1952, Kihara et al 1954, 
Mittag and Stephen 1971) and the known behaviour of the case 4 = 2 (Ising model). Let 
A(x) = -F/kT, where F is the free energy per lattice site. The duality theorem may be 
stated in the form (Zwanzig and Ramshaw 1977) 

1 +[4/(4 - w2. 

A(x)-ln[l+ (q - 1)x2] = A(?)-ln[l+ (9 - l)t2], 

t = (1 -x)/[ l+ (q - l)x], 

(1) 

(2) 

where x and t are related by the duality transformation 

x = (1 - t)/[l + (q - l)t]. 

Clearly, if A(x) is singular at the point x = X O ,  then it will also be singular at the dual 
point x = (1 -xO)/[l+(q - l)xo]. 

Keeping the duality theorem in mind, let us review the known behaviour of the case 
q = 2. For this case, the singularities in A(x) lie on the two circles (Fisher 1965, 
Brascamp and Kunz 1974) 

x = r l + J Z e x p ( i 4 )  (0 d 4 < 2T), (3) 
t Work performed in part under the auspices of the United States Department of Energy. 
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which will be referred to as the left and right circles respectively. It is of interest to see 
how the duality relation between singular points is satisfied for these circles. One 
readily verifies that both circles are self-dual; i.e. the dual to any point on either circle is 
another point on the same circle. However, the two circles are self-dual in quite 
different ways. On the left circle, the dual to a point x is just the conjugate point x " ;  i.e. 
t ( x )  = x " .  On the right circle, the straight line connecting a point x to its dual always 
passes through the origin, so that t ( x )  = - a x ,  where a is real and positive (and depends 
on 4). 

A physical singularity can occur only when one of the circles intersects the real axis 
within the physically permissible range of x. For J > 0 (ferromagnetic case) the physical 
range of x is 0 s x < 1. The only intersection in this range is at the point xf = J 2  - 1, 
which is the known ferromagnetic critical point. For J < 0 (antiferromagnetic case) the 
physic21 range of x is 1 < x < 00. The only intersection in this range is at the point 
xa = J 2  + 1, which is the known antiferromagnetic critical point. 

Unphysical singularities are also of interest, since they can interfere with attempts to 
extract information about the physical singularity from power series expansions. For 
q = 2, it is known that A ( x )  contains the term ln(1 + x 2 ) ,  which is highly singular at the 
points x = k i  at which the two circles intersect. It is of interest to interpret this term with 
reference to the roots of the partition function QN for a system of N spins ( N  large). The 
quantity A ( x )  is related to QN by A ( x )  = 1imN+&V1 In ON).  Now QN is a polynomial 
in x of degree 2N, and it has real coefficients. It follows that QN has 2 N  roots, and that 
they occur in conjugate pairs. Since 

N-' ln[(x- i )N(x+i)N]=ln(l+x2) ,  (4) 

the presence of the term ln(1 + x z )  in A ( x )  implies that, for large N, almost all of the 2N 
roots of QN converge to the points x = *i at which the two circles intersect. 

We now observe that circles with similar duality properties can be found for 
arbitrary q. The condition t ( x )  = x" implies that x lies on the self-dual circle 

x = -1/(q - l )+q1 /2  exp(i#J)/(q - 1) (Os #J < 27r), ( 5 )  
which is the generalisation of the left circle to arbitrary q. The condition t ( x )  = -ax, 
where a is real and positive, implies that x lies either on the real axis (which is not of 
interest) or on the self-dual circle 

( 6 )  
which is the generalisation of the right circle to arbitrary q. Our conjecture is that the 
singularities in A ( x )  lie on the circles ( 5 )  and (6 )  for arbitrary q. 

With regard to physical singularities, the conjecture implies the following. The only 
intersection of a circle with the real axis in the ferromagnetic range 0 G x < 1 occurs at 
the point xf = (4"2 - l)/(q - l ) ,  which is the ferromagnetic critical point found by Potts 
(1952). The only intersection of a circle with the real axis in the antiferromagnetic 
range 1 < x  < 00 occurs at the point xa = 1 +[q/(4 - 1)]1'2, which is therefore the 
antiferromagnetic critical point. 

The point xf is fortuitously self-dual, a property which makes it conspicuous and 
which led to its early discovery. The point xa is not self-dual; it is therefore less 
conspicuous, which is the reason it has heretofore escaped detection for q > 2. 

With regard to unphysical singularities, it is natural to assume that, for large N, 
almost all of the 2N roots of QN continue to converge to the points at which the two 
circles intersect. For arbitrary q these intersections occur at the points x = +i(q - 1)lj2. 

x = 1 + [4/(q - I)]"' exp(i4) (0 c #J < 27r), 
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This assumption implies the presence of a term ln[l + (q - 1)x2] in A(x), and suggests 
that the quantity 

B ( x )  = Ab)- ln [ l+  (4 - 1)x2], (7) 
which incidentally is duality-invariant according to equation ( l ) ,  will be free of these 
unphysical singularities and hence more susceptible to analysis. B ( x )  is precisely the 
quantity analysed by Zwanzig and Ramshaw (1977), which perhaps explains why their 
analysis worked so well. (The mere fact that B(x)  is duality-invariant is insufficient 
explanation, since A(x) may be separated into a duality-invariant part and a remainder 
in an infinite number of ways.) 

The antiferromagnetic (J < 0) behaviour of the Potts model has received surpris- 
ingly little attention. The only such work of which we are aware is that of Schick and 
Griffiths (1977), who studied the case q = 3 on the triangular lattice using a renor- 
malisation group technique. It is to be hoped that further studies will be forthcoming, 
and that they will lead to a rigorous determination of xa. 

I am grateful to R W Zwanzig and T A PuEik for helpful discussions, and to J D Johnson 
for his comments on the manuscript. 
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